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Abstract In this study, PM2.5 filter samples were collected from two high‐elevation sites located in the
southern and northern areas of Tibetan Plateau (TP): the Qomolangma Station for Atmospheric
Environmental Observation and Research (QOMS) and Waliguan Baseline Observatory (WLG),
respectively. Collected samples were analyzed to examine the regional differences in aerosol properties and
relate them to potential chemical processes in the TP area. The aerosol mass concentrations inferred from
measured chemical components were higher at WLG (11.2 μg m−3) compared to QOMS (6.8 μg m−3).
The chemical composition shows higher contribution of organic aerosol at QOMS than that of WLG. The
optical properties of water‐soluble organic carbon (WSOC) from the QOMS samples show higher light
absorption efficient than those collected at WLG. The light absorption of WSOC at QOMS indicates
significant pH dependence with enhanced light absorption at higher pH values, while the light absorption
of WSOC from WLG samples show very weak pH dependence. The different pH dependence property
suggests the different chemical composition between them. The molecular‐level chemical composition
investigated using high‐resolution mass spectrometry (HRMS) assisted with an electrospray ionization (ESI)
shows significant differences in WSOC composition representative of two sampling sites. For QOMS
samples, CHO and CHON compounds are themajor chemical species detected in the negative (−) ESI mode,
while CHO and CHOS compounds are the most abundant chemical species detected by the same method
in samples collected at WLG. The differences in their molecular composition indicate the different sources
and chemical processes in these two regions.

1. Introduction

Tibetan Plateau (TP) is the biggest mountain plateau in the world with an area of ~2,500,000 km2 and aver-
age elevation more than 4,000 m above sea level (a.s.l), which impacts the regional climate and environment
through various dynamic and thermal effects (Yanai &Wu, 2006). The radiative energy balance over TP is an
important component of its thermal effect which is substantially influenced by ambient aerosol composition
and concentration (Lau et al., 2006). Light absorbing carbonaceous species are important components of
local aerosol, defining its direct radiative climate forcing in the area (Ramanathan et al., 2007). Because of
the large scale of the TP area, the aerosol content and composition over the TP is very diverse.

The aerosol composition in the northern and southern TP is expected to be significantly different owing to
differences in emission sources, climate systems, and meteorological conditions. Satellite observations indi-
cate frequent aerosol transport from the northwestern South Asia during March to June (pre‐monsoon per-
iod) every year to the southern TP (e.g., Himalayas) (Liu et al., 2008), and from the northwestern China and
Central Asia during summer in the northern TP (Huang et al., 2007). Specifically, enhanced thermal
mountain‐valley circulation is dominated in the northern TP during summer and drive aerosol plume to
the high‐elevation regions, while the southern TP is less polluted during summer because of the rapid
wash‐out of aerosol by frequent precipitation in the low elevation regions (Bonasoni et al., 2010; Hegde &
Kawamura, 2012; Xu et al., 2013). Favorable conditions for aerosol transport to the southern TP are in the
pre‐monsoon period when westerly winds and high aerosol loading at the source region are coupled
together. In addition, use of different fuels in two regions has a substantial impact on the aerosol composi-
tion and its variability between the southern and northern TP. Carbon isotope analysis of black carbon (BC)
in the northern TP indicated sources from fossil fuel combustion, whereas BC sources in the southern TP
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were attributed to biomass burning emissions (Li et al., 2016). However, the overall chemical and optical
characteristics of aerosol representative of the southern and northern TP regions are yet insufficiently
investigated.

Recent studies conducted in the southern and northern TP characterized the overall chemical composition
and mass loading of aerosols in these areas (e.g., Bonasoni et al., 2010; Marcq et al., 2010; Xu et al., 2014).
The average mass loadings of PM2.5 are generally lower at TP (<10 μg m−3) compared with urban areas
(>70 μgm−3) in China due to remote location and high elevation of TP. However, long‐range transport events
bringing much higher concentrations of PM2.5 were also reported with the mass loading up to 30 μg m−3

(Lüthi et al., 2015; Xu et al., 2014).Water‐soluble inorganic ions were analyzed as components of aerosol che-
mical composition, attributing them to common anthropogenic activities (Xu et al., 2014). Carbonaceous
content of aerosol has been a subject of recent studies due to its important contribution to mass loading
and significant climate effects (Cao et al., 2009). Measurements of the organic to elemental carbon ratio
(OC/EC) show elevated organic content in the southern TP attributed to the aged biomass burning emissions
(Ming et al., 2010). Aerosol mass spectrometry (AMS) has been applied in field studies of the aerosol chem-
istry which reported description ofmain organic aerosol (OA) classes, their temporal variations, variability in
chemical composition, sources, and oxidation states (Xu et al., 2018; Zhang et al., 2018). Molecular character-
ization of volatile OA fractions has been reported based on the gas‐phase MS measurements and provided
further insights on OA sources and chemistry (Hegde & Kawamura, 2012). However, most of these studies
were conducted at the southern TP locations, and less studies were performed at the northern TP.

Light absorption property of aerosol is important for evaluating its direct radiative forcing in the atmosphere.
Light absorbing components of OA (aka Brown carbon, BrC) absorb light at the low visible to near‐ultraviolet
(UV) wavelength range, and the BrC composition and sources have been a subject of many studies in recent
years (Laskin et al., 2015). The light absorption by BrC is expected to increase with altitude because BrC can
be transported to high altitudes by deep convection, and it can be also formed by in‐cloud multiphase reac-
tions (Zhang et al., 2017). The optical properties of BrC are also dependent strongly on the fuel types
(Olson et al., 2015). Generally, more absorbing BrC is typical for biomass burning organic aerosol (BBOA)
and anthropogenically influenced secondary organic aerosol (anthropogenic SOA) (Washenfelder et al.,
2015; Zhang et al., 2011). Molecular‐level studies of BrC composition show that the light absorbing com-
pounds are polycyclic aromatic hydrocarbons (PAH) and their oxygenated derivatives, nitroaromatics, phe-
nols, and aromatic acids (Desyaterik et al., 2013; Lin et al., 2016; Lin et al., 2017; Lin et al., 2018; Xie et al.,
2017). Furthermore, light absorbing spectral properties of BrC are pHdependent, which is important for eval-
uating the ambient radiative forcing in modeling studies (Lin et al., 2017; Phillips et al., 2017). Although the
contribution of BrC to light absorption is widely characterized in urban environments around the world,
information on the BrC composition and optical properties pertinent to the TP is scarce.

In this study, we extract and analyze the water‐soluble organic carbon (WSOC) in aerosol samples collected
at two field sites, located at the southern and northern edges of TP using a suite of methods including high‐
resolution mass spectrometry (HRMS), giving insights to chemical composition and optical properties of
water‐soluble BrC. Furthermore, this study sheds light on plausible sources of WSOC and aging of OA at
these two sites.

2. Materials and Methods
2.1. Sample Collection

The first set of aerosol samples were collected during a pre‐monsoon period on 12 April 12 to 12 May 2016
at the Qomolangma Station (QOMS, 28.36°N, 86.95°E, 4276 m a.s.l), a remote comprehensive research
observatory located at the toe of Mt. Qomolangma (Everest) of north Himalayas (Zhang et al., 2018). The
second set of the aerosol samples were collected at Mt. Waliguan Baseline Observatory (WLG, 36.28°N,
100.9°E, 3816 m a.s.l) during a separate field study conducted on 1–31 July 2017 (Zhang et al., 2019).
Figure 1 shows the location of QOMS and WLG sites on a map of the TP region. The sampling periods
at both sites were during “high aerosol” periods typical for the area. Since these two sites are all located
at the elevated remote areas, the collected samples contain aerosol‐transported long distances from the
emission sources. A suite of online instruments was co‐located during each study as reported elsewhere
(Zhang et al., 2018; Zhang et al., 2019). Aerosol filter samples at each site were collected on prebaked
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quartz‐fiber filters (47 mm diameter, Tissuquartz 2500 QAT‐UP, PALL Life Sciences) with a low volume
PM2.5 filter sampler (16.7 L min−1, model PQ200, BGI, USA). Each filter sample was collected every 48 hr,
starting at around 8:00 am (LT). Table S1 lists a total of 15 and 16 filter samples collected during the
QOMS and WLG studies, respectively. Blank filter samples were also obtained at each of the sites by
placing the filter in the sampler for 10 min without flowing air through the filters. The flow rates in each
of the samplers and corresponding meteorological conditions were recorded at 5 min intervals. The total
volumes of air filtered to collect the samples ranged between 37 and 48 m3 at the ambient condition. After
collection, the samples were placed in hermetic containers and stored at−20 °C in the dark pending analysis.

2.2. Overall Chemical Composition Analysis

The filter samples (11.95 cm2 of total area) were analyzed for basic chemical components. First, a 0.526 cm2

portion of each filter was analyzed for OC and EC content using a Thermal/Optical carbon analyzer (Desert
Research Institute [DRI] Model 2001, Atmoslytic Inc., Calabasas, CA, USA). The remaining filter was
extracted in Milli‐Qwater (TOC < 5 ppb, 18.2 MΩ·cm) or LC‐MS grade water (Fisher Scientific, USA) using
an ultrasonic bath for 30 min. The ultrasonic bath was kept at low temperature through adding ice in the
ultrasonic bath to prevent chemical reactions and evaporation loss during sonication. The extraction effi-
ciency of this method is estimated as 50%–70% based on previous study (Bein & Wexler, 2014). At the next
step, water‐insoluble residuals were removed by filtering extracts through 0.45‐μm pore‐size PTFE
Acrodisc syringe filter (Pall Life Sciences). The water‐soluble extracts were then analyzed for concentrations
of selected inorganic ions (Na+, NH4

+, K+, Mg2+, Ca2+, Cl−, SO4
2−, and NO3

−) using a dual ion chromato-
graph system, following protocols described elsewhere (Xu et al., 2015). WSOC was analyzed by a carbon
analyzer (model Vario Cube, Elementar, Hanau, Germany). Fractions of WSOCwere calculated by subtract-
ing inorganic carbon (IC), which is the sum of carbon in carbonates and dissolved CO2 in the sample, from
total carbon (TC). Fractions of water‐insoluble organic carbon (WIOC) were calculated as the difference of

Figure 1. Location map for the Tibetan Plateau and two sampling sites (QOMS andWLG). The insert photos for each site
were taken during field study.
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OC andWSOCmass concentrations. The details of instruments and measurement procedures are published
elsewhere (Feng et al., 2016; Lin et al., 2018; Xu et al., 2015).

Light absorbance of WSOC extracts was measured using a UV‐visible (UV‐vis) spectrophotometer (Model
UV‐2700, Shimadzu, Kyoto, Japan). Absorption spectra of WSOC extracts were acquired in the range of
200 to 900 nm at 1 nm intervals using Milli‐Q water as the reference. The absorption spectra were baseline
corrected by subtracting the mean absorbance from 690 to 700 nm. All absorption data in this study were
converted to an absorption coefficient at a given wavelength (Absλ). These absorbance values were used
to compare the absorption feature at these sites and derive the imaginary part of the complex refractive index
of water‐soluble BrC. In order to investigate the potential photo‐blenching of BrC and chemical difference
between these two sites, a photolysis experiment was conducted by illuminating the water extracts in a
1‐cm quartz cuvette for 4 hr using an ultraviolet light‐emitting diode (LED, Thorlabs, M365LP1, Ocean
Optics). The LED emission spectrum was centered at 365 nm with a bandwidth (FWHM) of 9 nm. The
LED was mounted about 30 cm up cuvette resulting in an incident power density of ~5 mW cm−2.
Meantime, the light absorption of water extracts was measured online using a broadband (180–900 nm) light
source at 30‐s interval (DH‐2000, Ocean Optics).

2.3. pH‐Dependent Measurement

Samples with highest mass loadings at each site were selected to record their UV‐vis absorption spectra at
different pH settings. Specially, four samples (F1, F29, F31, and F44) from QOMS and three samples (F1,
F4, and F9) fromWLGwere selected based on their mass concentrations (Table S1), concurrent AMS records
of aerosol composition, and air backward trajectory analysis confirming characteristic long‐range air trans-
port at each site. The pH of the sample was adjusted using mixtures of HCl (0.01 M) or NaOH (0.5 M) solu-
tions added using a micro‐pipette. The pH value of each sample was adjusted from 2 to 12, as measured by a
pH meter (Orion Star A111, Thermo Fisher Scientific, Waltham, MA, USA). The pH meter was calibrated
with buffer solutions of pH 4.01, 7.00, and 10.01 during the measurement.

2.4. HRMS Molecular Analysis

Organic aerosol is a very complex mixture, and HRMS is the most powerful tool for the OA characterization
(Laskin et al., 2018). In this study, molecular characterization of WSOC was performed using a Q‐Exactive
HF‐X Orbitrap™ mass spectrometer (Thermo Scientific, Inc.). The WSOC extracts were concentrated and
de‐salted using solid phase extraction (SPE) cartridges (DSC18, Supelco). The cartridges were conditioned
using a one‐column volume of acetonitrile (Optima®, Fisher chemical) and a one‐column volume of ultra-
pure water (LC/MS grade, Fisher Chemical), respectively. The acidified sample (pH = 2) went through
the cartridge at a low flowrate and eluted with a one‐column volume of ultrapure water first to remove
the loosely bound salts and then with a one‐column volume of acetonitrile to elute the organics that were
retained on the cartridge. The efficiency of the SPE cartridges was evaluated by measuring the UV‐vis
absorption before and after filtering and was found to be above 50%. Small molecular acids and carbohy-
drates may not be retained by the SPE cartridge and likely they were removed with the salts. The acetonitrile
fractions were concentrated to 2 mL under a slow stream of ultra‐pure N2 gas.

Prior the HRMS analysis, 0.5 mL of the sample was combined with 0.5 mL of methanol in 10% water. The
samples were directly infused to the mass spectrometer using an electrospray ionization source (ESI) oper-
ated in either positive or negative mode. The samples were injected at a flow rate of 5 μLmin−1. HRMS spec-
tra were acquired at a mass range 80–1,200 Da, mass resolving power of 240,000 atm/z 200. Spray voltages of
−2.5 and +3.5 kV were used in negative and positive ionization modes, respectively.

2.5. HRMS Data Process

The experimental data files were acquired using Xcalibur software (Thermo Scientific), and individual MS
peaks were extracted using Decon2LS program (http://ncrr.pnl.gov/software/). Background subtraction
and further data processing were performed using custom‐made Microsoft excel macros (Roach et al.,
2011). Briefly, the HRMS data were background subtracted using a blank, and the formula assignment
was performed based on the first‐ and the second‐order Kendrick mass defects using the macros and a
formula calculator (V1.1, MIDAS Analysis), excluding 13C isotopes. The formula assignment was limited
by <2 ppm mass accuracy filter. The formula assignments considered the following set of elements C ≤ 50,
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O≤ 40, H≤ 50, N≤ 4, S≤ 1, and Na≤ 1 (positive mode only). The formula
assignments were also constrained by elemental ratios of 0.3 ≤H/C ≤ 3.0,
0.0 ≤ O/C ≤ 3.0, 0.0 ≤ N/C ≤ 0.5, 0.0 ≤ S/C ≤ 0.2, and the double bond
equivalent (DBE) of 0.0 ≤ DBE/C ≤ 0.9.

3. Results and Discussions
3.1. Aerosol Mass Loadings and Main Chemical Fractions

The PM2.5 average mass concentration reconstructed from chemical mea-
surements are 6.8 μg m−3 for QOMS and 11.2 μg m−3 for WLG (Figure 2).
This trend is consistent with the PM1 mass loadings reported by AMS
measurements at these sites (4.4 μg m−3 for QOMS and 9.1 μg m−3 for
WLG) (Zhang et al., 2018, 2019). The mass difference between PM2.5

and PM1 were from the different size cut and their chemical composition
(such as mineral dust cannot be detected by AMS). The particle‐type com-
position of aerosols from these two sites was also significantly different.
The chemical composition of PM2.5 from the WLG samples was domi-
nated by sulfate, followed by ammonium, WIOC, WSOC, nitrate, EC,
and other chemical species. In contrast, main chemical fractions of
QOMS samples were in the order of WSOC, WIOC, sulfate, ammonium,
EC, nitrate, and other chemical species (Figure 2). The high contribution
of sulfate at WLG was also reported in other studies conducted at the
northern TP (Xu et al., 2014; Zhang et al., 2014). While PM2.5 in QOMS
is neutral, PM2.5 in WLG was weakly acidic based on the ion charge bal-
ance between ammonium and sum of sulfate and nitrate (Figure 3). The

ratio of EC/OC, which is an index for the organic matter oxidation, were similar for these two sites (0.17
and 0.18) (Figure 3). The ratio of WSOC/OC was consistent within all QOMS samples, whereas it showed
two distinct ratios for the WLG (Figure 3) samples, suggesting substantial differences in aerosol sources
and chemical processing.

Figure 2. The average mass concentration (top), chemical composition
(colored) and contribution (right of column) of PM2.5 filter samples at
each sampling site collected during 12 April to 12 May 2016 for QOMS and
1–31 July 2017 for WLG.

Figure 3. Scatter plots for ammonium vs. the sum of sulfate and nitrate, EC (elemental carbon) vs. OC (organic carbon), and WSOC (water‐soluble OC) vs. OC in
PM2.5 samples collected from each sampling site (QOMS; top plane, WLG; bottom plane).
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3.1.1. Light Absorption Properties of WSOC

The average absorption coefficient spectra of filter extracts as a function of
wavelength (nm) for both sites are shown in Figure 4. The absorption coef-
ficient of WSOC at QOMS was significantly higher than that of WLG
although the concentration of WSOC at QOMS was lower than that at
WLG. Quantitatively, the absorption coefficient at 365 nm (Abs365 ± 1σ)
was 0.92 ± 0.97 for QOMS and 0.30 ± 0.23 for WLG, respectively. The
absorption variation with respect to wavelength (AAE; absorption
Ångström exponent) was determined from the slope of a linear regression
fit of base 10 absorption coefficient versus wavelength within the range of
300 to 400 nm. AAE was slightly higher for QOMS than WLG (6.83 vs.
5.96), suggesting potential difference in the chemical composition of
BrC. Similar results (AAE: ~5.0) were also observed in Himalayas during
pre‐monsoon (Kirillova et al., 2016) and the southeastern TP (AAE: 6.9)
(Zhu et al., 2018). Values of the mass absorption efficient at 365 nm
(MAE365), calculated from the ratio of the absorption coefficient at 365
nm andmass concentration ofWSOC, recorded for the samples from these
two sites, were 0.81 for QOMS and 0.48 forWLG, respectively. TheMAE365

of the QOMS samples in our study is similar to that reported previously
(0.66–0.72 m2 g−1) for the same area of study—the Himalayas (Kirillova
et al., 2016). These MAE365 values are significantly lower than those
characteristic for fresh and/or less aged aerosol in urban areas of Beijing
during winter (1.26), but close to the values reported during summer
(0.52) (Du et al., 2014). The MAE365 value of the QOMS samples was
higher than that typical for aerosol in urban and rural sites (0.13–0.53) of
the southeastern United States (Liu et al., 2013). The MAE365 value of

theWLG samples is at a low range of literature results. Accordingly, the imaginary part k of refractive index,
which is directly related to light absorption by aerosol and can be incorporated into climate models, was
0.0324 for the QOMS and 0.0216 for the WLG samples, estimated based on the density of OA from AMS
results using element ratio method (1.4 g cm−3 for the QOMS and 1.6 g cm−3 for the WLG samples, respec-
tively; ρorg = 1000 * [(12 + 1 * (H:C) + 16 * (O:C)]/[7.0 + 5.0(H:C) + 4.15 * (O:C)]) (Kuwata et al., 2011).
Overall, the light absorbance of OA measured at the QOMS site is high enough that the radiative heating
could be significant in this mountain area (Jo et al., 2016).

3.1.2. Effect of pH on Light Absorption

Recent studies showed that the light absorption by some of the BrC samples is pH dependent due to depro-
tonation or conformational changes on chromophores at high pH values (Lin et al., 2017; Phillips et al.,
2017). In this study, we also investigated the effect of pH on light absorption for the high mass concentration
samples fromQOMSandWLG. The results are shown in Figure 5. Absorbance of theQOMS sample showed a
significant increase with the increase of pH, compared to the absorbance by theWLG sample. The integrated
absorbance between 300 and 450 nm normalized to pH = 2 at QOMS showed a clear increase with a slope of
0.07 (Figure 6a). This slopewas consistent with the observation for a forest fire aerosol sample in Phillips et al.
(2017) (0.08). The pH dependent absorption spectra for QOMS are also clearly illustrated by the ratio of the
average absorption at different pH values, with respect to the absorption at pH = 2 (Figure S1). The AAE
values (within the range 300 to 450 nm) for QOMS samples decrease with the increase of pH (Figure S2) indi-
cating that absorption of BrC at longer wavelengths increased more than at shorter wavelengths. This phe-
nomenon was observed for BrC components such as nitroaromatic species (Lin et al., 2017) and humic
substances (Phillips et al., 2017) due to red‐shifting absorption under the roles of deprotonation and confor-
mational changes of these compounds. However, this was not observed for BrC atWLG. Furthermore, subtle
changes at different wavelengths for different samples at QOMS were also observed by the plot of difference
between the absorbance at a particular value of pH related to pH = 2 (Figure S3), suggesting presence of dif-
ferent chromophores in different samples (Phillips et al., 2017). Overall, the observed effects of pH on the BrC
absorption pertaining to the QOMS and WLG samples suggest differences in the chemical composition of
BrC at two sites.

Figure 4. The average light absorption of WSOC (water‐soluble organic car-
bon) in QOMS and WLG. The shaded area for each average absorption
spectrum represents one‐time standard deviation (1σ). The insert figure
shows the average absorption spectrum at log scale. The values of AAE
(absorption Ångström exponent between 300 and 400 nm), OA_AMS
(organic aerosol measured by AMS), mass absorption coefficient (MAE) at
365 nm (MAE365), and the imaginary part k of refractive index are also
shown.
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3.1.3. Photolysis of WSOC
To assess stability of WSOC under photolysis, the extracts were photolyzed at a 365 nm light for 4 hr. The
overall characteristics of this experiment was substantial photobleaching at the short wavelengths (300–
350 nm), although the extent of this effect varied (Figure 7). The observed photobleaching effect suggests
that aerosol at QOMS and WLG had experienced strong aging during transport to the sampling site. Lin
et al. (2016) reported a ~16 hr half‐time of photolytic decay for water extract of fresh biomass burning aerosol
at a natural light condition. For ambient aerosol, there were many oxidants in the atmosphere; therefore, the
photolytic decay could be faster than the reported half time (Fleming et al., 2019). In addition, since the
photolytic decay experiment was conducted for water extract, in which the initial pH was close to neutral,
the photolytic decay could be faster under acidic condition which is more consistent with the actual ambient
conditions (Cai et al., 2018). The photolytic decay for the sample from WLG is not a smooth exponential
decay, likely because different chromospheres decompose at different rates (Fleming et al., 2019).

3.2. Molecular‐Level Insights into WSOC

The reconstructed (+)ESI and (−)ESI mass spectra showing the assigned m/z for (a) QOMS and (b) WLG
samples are displayed in Figure 8. The fractions of the assigned formulas to the total detected MS peaks were
in the range of 41%–50% in each of the experiments. Majority of the formulas were detected in (−)ESI mode

Figure 5. Averaged absorbance spectra as a function of pH for the WSOC samples from (a) QOMS and (b) WLG. The lin-
earity of the log‐transformed spectra (inset) indicates the quality of fit to a power law function.

Figure 6. (a) Integrated absorbance (300–450 nm) normalized to values at pH = 2 as a function of pH and (b) absorption
Ångström exponent (AAE) as a function of pH for samples of QOMS. The error bar is the standard deviation (1σ).
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Figure 7. Photolysis of high mass concentration samples at (a) QOMS and (b) WLG

Figure 8. The reconstructed ESI+ and ESI−mass spectra of the assignedm/z for (a) QOMS and (b) WLG. The Venn dia-
gram in each figure show the comparison of identified formula between ESI+ and ESI− modes; the pie charts in each
figure show the ratio of assigned formula to total MS peaks detected in eachmode. The abundance weighted (w) elemental
ratios are shown.
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(5369 for QOMS and 3600 for WLG). Out of them, ~18% species were observed in both (+)ESI and (−)ESI
modes, for each site (Figures 8a and 8b). Larger fractions of species with higher m/z values were detected
in the WLG samples, compared to the QOMS. The m/z in the QOMS samples were mainly in the range of
100–200, while in the WLG sample they were in the range of 200–400. The identified molecular formulas
were further categorized into CHO, CHON, CHONS, and CHOS subclasses based on their elemental compo-
sition (Figure S4). Table 1 summarizes the chemical composition of five most abundant peaks detected in
each mode for these two sites. In the (+)ESI mode, CHOS compounds dominate the most abundant peaks
in the WLG samples, while CHON compounds dominate the most abundant peaks in the QOMS samples.
In (−)ESI mode, CHO compounds are the major species detected at both sites.

The differences in chemical characteristics between the QOMS and WLG samples can be additionally illu-
strated through elemental ratios. The abundance weighted O/C in (+)ESI and (−)ESI modes of the QOMS
samples were 0.42 and 0.65, which were higher than those of the WLG samples (0.39 and 0.49), respectively,
suggesting its higher oxidation degree. Oxidation state of carbon (OSC), a more specific metric for oxidation
of OA, shows −0.70 and −0.79 for the QOMS and the WLG samples, indicating higher oxidation state of OA
at QOMS. The plot of OSC vs. number of carbon atoms (nC) show high clustering of points at oxygenated OA
(OOA) for QOMS than WLG (Figure 9). This higher oxidation degree of OA at QOMS was also observed in
previous AMS measurements (Zhang et al., 2018; Zhang et al., 2019). The Van Krevelen (VK) diagram plots

Table 1
The Most Abundant Five Peaks in Each Mode at the Two Sites

Site Experimental m/z Elemental formula of neutral species Relative abundance DBE Detection mode

QOMS 118.07380 C4H10N2O2 31.9 1 (+)ESI
119.09402 C5H13NO2 4.0 0 (+)ESI
89.04764 C3H7NO2 3.7 1 (+)ESI
117.07860 C5H11NO2 3.3 1 (+)ESI
134.06852 C4H10N2O3 2.6 1 (+)ESI
168.02682 C4H8O7 17.4 1 (−)ESI
164.04687 C9H8O3 2.5 6 (−)ESI
153.04216 C7H7NO3 2.0 5 (−)ESI
200.10468 C10H16O4 1.4 3 (−)ESI
180.04196 C9H8O4 1.3 6 (−)ESI

WLG 302.11414 C17H18O5S 11.5 9 (+)ESI
370.21817 C16H34O9S 2.8 0 (+)ESI
414.24426 C18H38O10S 2.3 0 (+)ESI
326.19251 C14H30O8S 2.3 0 (+)ESI
428.25959 C19H40O10S 1.9 0 (+)ESI
188.06812 C8H12O5 13.9 3 (−)ESI
202.08389 C9H14O5 3.9 3 (−)ESI
174.05240 C7H10O5 3.2 3 (−)ESI
139.02635 C6H5NO3 2.8 5 (−)ESI
200.10461 C10H16O4 2.2 3 (−)ESI

Figure 9. The plot of carbon‐based oxidation state (OSC) vs. number of carbon atom (nC) for (a) QOMS and (b) WLG
colored by the distribution of number of molecules. The circles in each plot indicate the potential organic aerosol
sources. Hydrocarbon‐like organic aerosol (HOA) and biomass burning organic aerosol (BBOA) correspond to primary
particulate matter directly emitted into the atmosphere. Less and more oxidized organic aerosol (LO‐OOA and MO‐OOA)
correspond to fresh and aged secondary aerosol produced by multistep oxidation reactions.
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the hydrogen to carbon atomic ratio (H/C) and the oxygen to carbon atomic ratio (O/C). It can be used to
infer plausible functional groups contained in the species and further deduce the reaction pathways of which
they form (Heald et al., 2010). The VK diagrams for the aerosol samples from the QOMS and WLG sites are
shown in Figure 10. Molecules in the QOMS samples may have higher extent of carbonyl functional groups
(slope <−1) than those of theWLG sample. This suggests that the species in the QOMS sample containmore
unsaturated compounds than those from the WLG sample. Indeed, the abundance weighted DBE in (−)ESI
was 5.62 for the QOMS and 4.36 for the WLG samples.

The plot of DBE vs. nC can be used to infer the distribution of potential BrC active components (Lin et al.,
2018). Since light absorption of BrC requires conjugated double bonds, the potential chromophores are sug-
gested to have DBE/C ratio greater than that of linear polyenes (Lin et al., 2018), which is highlighted in
brown in Figure 11. It is distinct that OA species from the QOMS sample have higher DBE values, and cor-
responding species were detected in both (+)ESI and (−)ESI modes (66 + 339 for the QOMS vs. 29 + 132 for
the WLG samples, respectively), with more species detected in (−)ESI mode. These species with high DBE
values are mainly CHO and CHON compounds (190 vs. 149 for QOMS (−)ESI; 22 vs. 44 for QOMS (+)

ESI; 102 vs. 30 for WLG (−)ESI; 24 vs. 5 for WLG (+)ESI). The tentative
structures of these CHO compounds are suggested to be lignin fragments
and molecular markers of biomass burning, which is a significant source
of OA in this region (Zhang et al., 2018). These CHO compounds are rela-
tively small aromatic compounds with 8–11 C atoms and multiple acidic
polar functional groups, which are readily ionized in the (−)ESI mode.
In contrast, biomass burning is not a major contributor to OA in the
WLG samples, which is likely the major reason for less distinct BrC chro-
mophores observed in the WLG samples compared to the QOMS (Zhang
et al., 2019). In addition, 149 and 30 nitrogen‐containing potential BrC
chromophores were detected in the QOMS and the WLG samples, respec-
tively, in the (−)ESI mode. These nitrogen‐containing compounds con-
tained 1 or 2 N atoms and 2–4 O atoms, and likely are nitrophenols
originated from biomass burning emissions. Reactions of nitrogen dioxide
(NO2) and nitrate radicals (NO3) with phenolic compounds in biomass
burning plume could be the potential formation pathways of
these compounds.

3.3. Potential Aerosol Sources and Chemical Processes in These
Two Sites

Different chemical and physical properties of OA sampled at the QOMS
and WLG sites suggest that the aerosol sources and chemical processes
in these two regions are different. Aerosol sources for these two sites

Figure 10. Van Krevelen diagram of H/C vs. O/C for (a) QOMS and (b) WLG. Data points from ESI+ are marked in red
and ESI‐ are marked in black. Each arrow corresponds to the addition of a particular functional group to an aliphatic
carbon and the percentage number indicate the data points in each region to the total data points.

Figure 11. The plot of DBE vs. nC. The reference lines indicate linear poly-
ene (DBE = 0.5 * nC), cata‐PAHs (DBE = 0.75 * nC − 0.5), and fullerene‐like
hydrocarbons (DBE = 0.9 * nC). The brown highlighted region represents
potential brown carbon chromophores. Note that many points are over-
lapped together.
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could be generally determined by air mass trajectory analysis which show that the air mass to WLG were all
from the inland of northwest of China with about 50% from the source at short distance (100–200 km), while
they were dominantly from northwest of India with long distance (up to 1,000 km) (Figure S5). Based on
satellite monitoring and in situ observations (Kumar et al., 2011; Zhang et al., 2018), biomass burning has
been identified as the major source of OA in the southern TP, while anthropogenic emissions (coal combus-
tion and fossil fuel usage) are the major source of OA in the northern TP (Li et al., 2016) (Figure 12). This is
determined by the energy structure and distribution of natural resources in the countries adjacent to the
northern and southern part of the TP region. For example, use of wood for residential cooking and heating
is very common in India, while coal is more widely used in China. Combustion of coal emits large amounts
of sulfur dioxide (SO2), carbonyl compounds, and PAH (Chen et al., 2005; Jakober et al., 2006). Under the
urbanization and economic development inWestern China, SO2 emissions show an increasing trend in con-
trast to the decreasing trend in East China (Ling et al., 2017). High concentration of SO2 with carbonyl com-
pounds and PAH is susceptible to form sulfur‐containing SOA (Hettiyadura et al., 2017; Staudt et al., 2014).
Biomass burning emits large amount of nitrogen oxides (NO and NO2; NOx), and reactive volatile organic
compounds such as phenolic compounds (Andreae & Merlet, 2001; Simoneit et al., 1993). In addition, high
contribution of nitrate is generally observed in biomass burning emission plume, as reported by the AMS
measurement at the QOMS site (Zhang et al., 2018). Reactions of NOx and NO3 with phenolic compounds
can generate light absorbing BrC compounds, such as nitro‐phenols (Lin et al., 2016).

4. Conclusions

The chemical composition and mass loading of PM2.5 samples collected at the QOMS and the WLG sites are
substantially different. Specifically, sulfate is the major constituent of PM2.5 at the WLG, while OA is the
major constituent of PM2.5 at the QOMS. The light absorption by OA at the QOMS site is stronger than that
at theWLG site, suggesting higher content of atmospheric BrC at the QOMS site, compared to theWLG. The
light absorption of OA at the QOMS site is pH dependent. The weak susceptibility of the OA to photolysis at
both sites suggests presence of aged OA at both sites. The elemental composition analysis indicates high con-
tribution of CHON compounds in the QOMS samples and CHOS compounds in the WLG samples. Likely,
the CHON compounds originated from biomass burning emissions, while CHOS compounds originated
from anthropogenic emissions. The underlined differences in the chemical composition and light absorption
properties of aerosols in the southern and northern TP in this study should be taken into account to accu-
rately predict the radiative forcing in different regions in climate models.
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